PROPERTIES : Matrices and Determinants

# Properties of Determinants:	# Properties of Transpose:
A' = A	(A')' = A
$ KA = K^n A $	$(A \pm B)' = A' \pm B'$
AB = A B	(AB)' = B'A'
$ A^n = A ^n$	(KA)' = K(A')
Where $n = order$ of Matrix.	$(A^n)' = (A')^n$
AI = IA = A	
# Properties of Adjoint:	# Properties of Inverse:
$ Adj A = A ^{n-1}$ $A. (Adj A) = (Adj A) A = A I$ $Adj (AB) = (Adj B)(Adj A)$ $(Adj A^{1}) = (Adj A)^{1}$ $Adj (Adj A) = A ^{n-2} A$ $ Adj (Adj A) = A ^{(n-1)^{2}}$ $ A. Adj A = A ^{n}$	$A^{-1} = \frac{Adj (A)}{ A }$ $A A^{-1} = A^{-1} A = I$ $ A^{-1} = \frac{1}{ A }$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^{-1})^{-1} = A$ $(A^{-1})^{T} = (A^{T})^{-1}$ $(A^{n})^{-1} = (A^{-1})^{n} n = order$
Symmetric Matrix => $A = A'$ Skew-symm Matrix => $A = -A'$ Singular Matrix => $ A = 0$ Non-Singular Matrix => $ A \neq 0$ Note: If A is both symmetric and skew- symm. Matrix then A is Zero Matrix	# for any square matrix A $A = \frac{1}{2} (A + A') + \frac{1}{2} (A - A')$ symm. sk.symm. # MATRIX METHOD to solve linear equation 2/3 variable $=> AX = B \qquad => X = A^{-1}B$