ASSIGNMENT: VECTORS

Q1. For any vector \vec{a} , show that $|\vec{a}x\hat{i}|^2 + |\vec{a}x\hat{j}|^2 + |\vec{a}x\hat{k}|^2 = 2|\vec{a}|^2$

Q2. If \vec{a} , \vec{b} and \vec{c} are the vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ then show that $\vec{b} = \vec{c}$.

Q3. If the sum of two unit vectors is a unit vector prove that magnitude of their difference is $\sqrt{3}$.

Q4. If \vec{a} and \vec{b} are the unit vectors at an angle θ .

Show that:

a)
$$\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a} + \hat{b}|$$
 b) $\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|$ c) $\tan \frac{\theta}{2} = \frac{|\hat{a} - \hat{b}|}{|\hat{a} + \hat{b}|}$

b)
$$\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|$$

c)
$$\tan \frac{\theta}{2} = \frac{|\hat{a} - \hat{b}|}{|\hat{a} + \hat{b}|}$$

Q5. Prove that : a) $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$

b)
$$|\hat{a}+\hat{b}|^2 = |\hat{a}|^2 + |\hat{b}|^2 + 2\vec{a}.\vec{b}$$

Q6. Show that the Angle between two diagonals of a cube is $\cos^{-1}(\frac{1}{3})$.

Q7. If $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ then prove \vec{a} is parallel to \vec{b} .

Q8. Prove Cauchy Schwarty Inequality.

ie for any two vectors \vec{a} and \vec{b} ; show that $|\vec{a}.\vec{b}| \le |\vec{a}|.|\vec{b}|$

Q9. Prove Triangle inequality i.e. for any two vectors \vec{a} and \vec{b} prove $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$.

Q10. a) If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ then show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$.

- b) If $\vec{a} + \vec{b} + \vec{c} = 0$ then prove $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- c) If $|\vec{a}+\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$ the show \vec{a} and \vec{b} orthogonal vectors.