

MATHEMATICS

Relations and Functions

Top Concepts in Relations

1. Introduction to Relation and no. of relations

- A relation R between two non-empty sets A and B is a subset of their Cartesian product A \times B.
- If A = B, then the relation R on A is a subset of $A \times A$.
- The total number of relations from a set consisting of m elements to a set consisting of n elements is 2^{mn}.
- If (a, b) belongs to R, then a is related to b and is written as 'a R b'. If (a, b) does not belong to R, then a is not related to b and it is written as 'a K b'.

2. Domain, Co-domain and Range of a Relation

Let R be a relation from A to B. Then the 'domain of R' \subset A and the 'range of R' \subset B. Co-domain is either set B or any of its superset or subset containing range of R.

3. Types of Relations

- A relation R in a set A is called an empty relation if no element of A is related to any element of A,
 i.e. R = φ ⊂ A × A.
- A relation R in a set A is called a universal relation if each element of A is related to every element of A, i.e. R = A × A.
- 4. A relation R on a set A is called:

a.**Reflexive**, if $(a, a) \in R$ for every $a \in A$.

b.**Symmetric**, if $(a_1, a_2) \in R$ implies that $(a_2, a_1) \in R$ for all $a_1, a_2 \in A$.

c.**Transitive**, if $(a_1, a_2) \in R$ and $(a_2, a_3) \in R$ implies that $(a_1, a_3) \in R$ for all $a_1, a_2, a_3 \in A$.

5. Equivalence Relation

- A relation R in a set A is said to be an **equivalence relation** if R is reflexive, symmetric and transitive.
- An empty relation R on a non-empty set X (i.e. 'a R b' is never true) is not an equivalence relation, because although it is vacuously symmetric and transitive, but it is not reflexive (except when X is also empty).
- Given an arbitrary equivalence relation R in a set X, R divides X into mutually disjoint subsets
 S_i called partitions or subdivisions of X provided:

a.All elements of S_i are related to each other for all i.

b.No element of S_i is related to any element of S_i if $i \neq j$.

c.
$$\bigcup_{i=1}^{n} S_{j} = X$$
 and $S_{i} \cap S_{j} = \phi$ if $i \neq j$.

The subsets S_i are called equivalence classes.

7. Union, Intersection and Inverse of Equivalence Relations

- a. If R and S are two equivalence relations on a set A, $R \cap S$ is also an equivalence relation on A.
- b. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- c.The inverse of an equivalence relation is an equivalence relation.

Top Concepts in Functions

1. Introduction to functions

A function from a non-empty set A to another non-empty set B is a correspondence or a rule which associates every element of A to a unique element of B written as $f : A \rightarrow B$ such that f(x) = y for all $x \in A$, $y \in B$.

All functions are relations, but the converse is not true.

2. Domain, Co-domain and Range of a Function

- If f : A→B is a function, then set A is the domain, set B is the co-domain and set {f(x) : x ∈ A} is the range of f.
- The range is a subset of the co-domain.
- A function can also be regarded as a machine which gives a unique output in set B corresponding to each input from set A.
- If A and B are two sets having m and n elements, respectively, then the total number of functions from A to B is n^m.

3. Real Function

- A function $f : A \rightarrow B$ is called a real-valued function if B is a subset of R.
- If A and B both are subsets of R, then 'f' is called a real function.
- While describing real functions using mathematical formula, x (the input) is the independent variable and y (the output) is the dependent variable.
- The graph of a real function 'f' consists of points whose co-ordinates
 (x, y) satisfy y=f(x), for all x ∈ Domain(f).

4. Vertical line test

A curve in a plane represents the graph of a real function if and only if no vertical line intersects it more than once.

5. One-one Function

- Smart Mathematics • A function f : A \rightarrow B is **one-to-one** if for all x, y \in A, f(x) = f(y) \Rightarrow x = y or x \neq y \Rightarrow f(x) \neq f(y)
- A one-one function is known as an injection or injective function. Otherwise, f is called many-one.

6. Onto Function

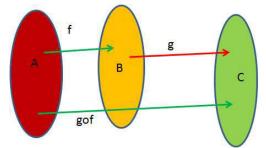
- A function f : A \rightarrow B is an **onto** function, if for each b \in B, there is at least one a \in A such that f(a) = b, i.e. if every element in B is the image of some element in A, then f is an onto or surjective function.
- For an onto function, range = co-domain.
- A function which is both one-one and onto is called a **bijective** function or a bijection.
- A one-one function defined from a finite set to itself is always onto, but if the set is infinite, then it is not the case.
- 7. Let A and B be two finite sets and $f : A \rightarrow B$ be a function.
 - **a.** If f is an injection, then $n(A) \le n(B)$.
 - **b.** If f is a surjection, then $n(A) \ge n(B)$.
 - **c.** If f is a bijection, then n(A) = n(B).
- 8. If A and B are two non-empty finite sets containing m and n elements, respectively, then
 - Number of functions from A to B = n^m

• Number of one-one functions from A to B =
$$\begin{cases} {}^{n}C_{m} \times m!, \text{ if } n \ge m \\ 0, \text{ if } n < m \end{cases}$$
• Number of onto functions from A to B =
$$\begin{cases} \sum_{r=1}^{n} (-1)^{n-r} {}^{n}C_{r}r^{m}, \text{ if } m \ge n \\ 0, \text{ if } m < n \end{cases}$$
• Number of one-one and onto functions from A to B =
$$\begin{cases} n!, \text{ if } m=n \\ 0, \text{ if } m \neq n \end{cases}$$

9. If a function $f : A \to B$ is not an onto function, then $f : A \to f(A)$ is always an onto function.

10. Composition of Functions

• Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. The composition of f and g, denoted by g o f, is defined as the function g o f: A \rightarrow C and is given by g o f(x) : A \rightarrow C defined by g o f(x) = g(f(x)) $\forall x \in A$.



- Composition of f and g is written as g o f and not f o g.
- g of is defined if the range of $f \subseteq$ domain of g, and f o g is defined if the range of $g \subseteq$ domain of f.
- Composition of functions is not commutative in general i.e., f o $g(x) \neq g$ o f(x).
- Composition is associative i.e. if $f: X \rightarrow Y$, $g: Y \rightarrow Z$ and $h: Z \rightarrow S$ are functions, then h o (g o f) = (h o

• The composition of two bijections is a bijection.

11. Inverse of a Function

- •Let $f : A \to B$ is a bijection, then $g : B \to A$ is inverse of f if $f(x) = y \Leftrightarrow g(y) = x \text{ OR } g \text{ o } f = I_A$ and fog = I_B
- If g o f = I_A and f is an injection, then g is a surjection.
- If f o g = I_B and f is a surjection, then g is an injection.
- 12. Let $f : A \to B$ and $g : B \to C$ be two functions. Then
 - g o f: A \rightarrow C is onto \Rightarrow g:B \rightarrow C is onto
 - g o f: A \rightarrow C is one-one \Rightarrow f:A \rightarrow B is one-one
 - g o f: A \rightarrow C is onto and g:B \rightarrow C is one-one \Rightarrow f:A \rightarrow B is onto
 - g o f : A \rightarrow C is one-one and f:A \rightarrow B is onto \Rightarrow g:B \rightarrow C is one-one

13. Invertible Function

- A function f : X → Y is defined to be invertible if there exists a function g : Y → X such that gof = I_X and fog = I_Y.
- The function g is called the inverse of f and is denoted by f⁻¹. If f is invertible, then f must be one-one and onto, and conversely, if f is one-one and onto, then f must be invertible.
- If f : A → B and g : B → C are one-one and onto, then g o f : A → C is also one-one and onto. But if g o f is one-one, then only f is one-one and g may or may not be one-one. If g o f is onto, then g is onto and f may or may not be onto.
- Let $f : X \to Y$ and $g : Y \to Z$ be two invertible functions. Then g o f is also invertible with $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- If f: $R \rightarrow R$ is invertible, f(x) = y, then $f^{-1}(y) = x$ and $(f^{-1})^{-1}$ is the function f itself.

Binary Operations

- **1.** A binary operation * on a set A is a function from A × A to A.
- 2. If * is a binary operation on a set S, then S is closed with respect to *.

3. Binary operations on R

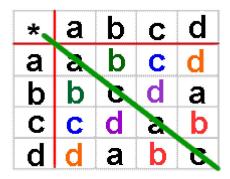
- Addition, subtraction and multiplication are binary operations on R, which is the set of real numbers.
- Division is not binary on R; however, division is a binary operation on R {0}, which is the set of non-zero real numbers.

4. Laws of Binary Operations

- •A binary operation * on the set X is called commutative, if a * b = b * a, for every $a, b \in X$.
- •A binary operation * on the set X is called associative, if $a * (b^*c) = (a^*b)^*c$, for every a, b, $c \in X$.
- •An element $e \in A$ is called an **identity** of A with respect to * if for each $a \in A$, a * e = a = e * a.
- •The identity element of (A, *), if it exists, is **unique**.

5. Existence of Inverse

- Given a binary operation * from A × A → A with the identity element e in A, an element a ∈ A is said to be invertible with respect to the operation *, if there exists an element b in A such that a * b = e = b * a and b is called the inverse of a and is denoted by a⁻¹.
- 6. If the operation table is symmetric about the diagonal line, then the operation is commutative.



The operation * is commutative.

7. Binary Operation on Natural Numbers

Addition '+' and multiplication '-' on N, the set of natural numbers, are binary operations. However, subtraction '-' and division are not, because $(4, 5) = 4 - 5 = -1 \notin N$ and $4/5 = .8 \notin N$.

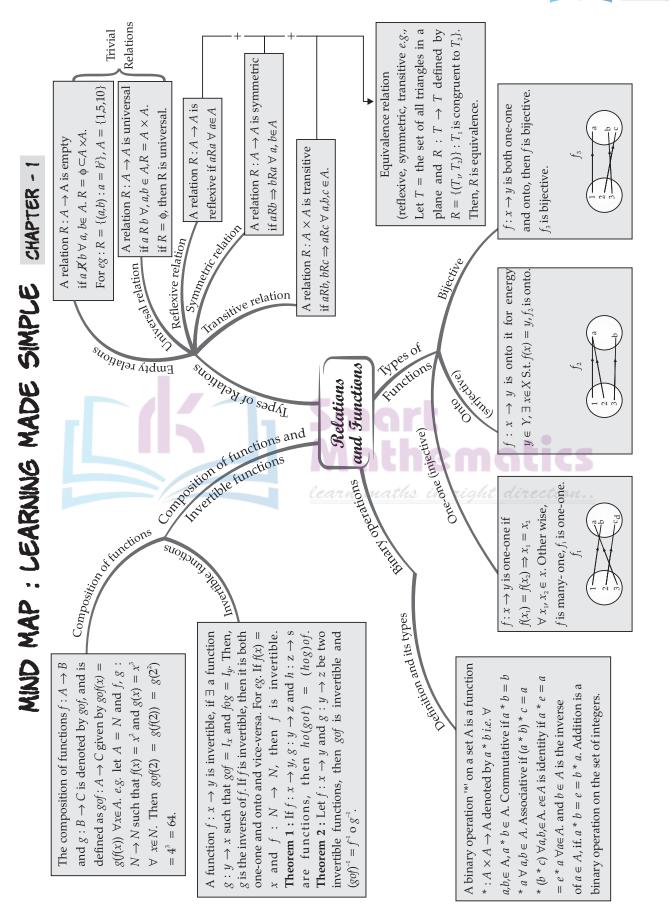
8. Number of Binary Operations

- Let S be a finite set consisting of n elements. Then $S \times S$ has n^2 elements.
- The total number of functions from a finite set A to a finite set B is $\left\lceil n(B) \right\rceil^{n(A)}$. Therefore, the total

number of binary operations on S is n^{n^2} .

n(n-1)

• The total number of commutative binary operations on a set consisting of n elements is n^{-2} .



Smart Mathematics

Important Questions

Multiple Choice questions-

- 1. Let R be the relation in the set (1, 2, 3, 4}, given by:
- $\mathsf{R} = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}.$

Then:

- (a) R is reflexive and symmetric but not transitive
- (b) R is reflexive and transitive but not symmetric
- (c) R is symmetric and transitive but not reflexive
- (d) R is an equivalence relation.
- 2. Let R be the relation in the set N given by: $R = \{(a, b): a = b 2, b > 6\}$. Then:
- (a) (2, 4) ∈ R
- (b) $(3, 8) \in \mathbb{R}$
- (c) (6, 8) ∈ R
- (d) (8, 7) ∈ R.

3. Let A = $\{1, 2, 3\}$. Then number of relations containing $\{1, 2\}$ and $\{1, 3\}$, which are reflexive and symmetric but not transitive is:

- (a) 1
- (b) 2
- (c) 3
- (d) 4.

4. Let A = (1, 2, 3). Then the number of equivalence relations containing (1, 2) is

- (a) 1
- (b) 2
- (c) 3
- (d) 4.

5. Let f: $R \rightarrow R$ be defined as f(x) = x⁴. Then

CS.

- (a) f is one-one onto
- (b) f is many-one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto.
- 6. Let f: $R \rightarrow R$ be defined as f(x) = 3x. Then
- (a) f is one-one onto
- (b) f is many-one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto.

7. If f: R \rightarrow R be given by f(x) = $(3 - x^3)^{1/3}$, then f_of (x) is

- (a) x^{1/3}
- (b) x³
- (c) x
- (d) 3 x³.

8. Let f: $R - \{-\frac{4}{3}\} \rightarrow R$ be a function defined as: $f(x) = \frac{4x}{3x+4}$, $x \neq -\frac{4}{3}$. The inverse of f is map g: Range f $\rightarrow R - \{-\frac{4}{3}\}$ given by

smart

Mathema

- (a) g(y) = $\frac{3y}{3-4y}$
- (b) g(y) = $\frac{4y}{4-3y}$
- (c) $g(y) = \frac{4y}{3-4y}$

(d) g(y) =
$$\frac{3y}{4-3y}$$

9. Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is

(a) Reflexive and symmetric

(b) Transitive and symmetric

(c) Equivalence

(d) Reflexive, transitive but not symmetric.

10. Set A has 3 elements, and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is:

- (a) 144
- (b) 12
- (c) 24
- (d) 64

Very Short Questions:

- 1. If $R = \{(x, y) : x + 2y = 8\}$ is a relation in N, write the range of R.
- 2. Show that a one-one function:
 - f {1, 2, 3} \rightarrow {1, 2, 3} must be onto. (N.C.E.R.T.)
- 3. What is the range of the function $f(x) = \frac{|x-1|}{|x-1|}$? (C.B.S.E. 2010)
- 4. Show that the function $f : N \rightarrow N$ given by f(x) = 2x is one-one but not onto. (N.C.E.R.T.)

Smort

- 5. If $f : R \rightarrow R$ is defined by f(x) = 3x + 2 find f(f(x)). C.B.S.E. 2011 (F))
- 6. If $f(x) = \frac{x}{x-1}$, $x \neq 1$ then find fof. (N.C.E.R.T)
- 7. If f: R \rightarrow R is defined by f(x) = (3 x³)^{1/3}, find fof (x)
- 8. Are f and q both necessarily onto, if gof is onto? (N.C.E.R.T.)

Short Questions:

1. Let A be the set of all students of a Boys' school. Show that the relation R in A given by:

 $R = \{(a, b): a \text{ is sister of } b\}$ is an empty relation and the relation R' given by :

R' = {(a, b) : the difference between heights of a and b is less than 3 metres} is an universal relation. (N.C.E.R.T.)

2. Let $f: X \rightarrow Y$ be a function. Define a relation R in X given by :

Smart Nathematics

 $R = \{(a,b):f(a) = f(b)\}.$

Examine, if R is an equivalence relation. (N.C.E.R.T.)

3. Let R be the relation in the set Z of integers given by:

 $R = \{(a, b): 2 \text{ divides } a - b\}.$

Show that the relation R is transitive. Write the equivalence class [0]. (C.B.S.E. Sample Paper 2019-20)

4. Show that the function:

 $f: N \rightarrow N$

given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2 is onto but not one-one. (N.C.E.R.T.)

5. Find gof and fog, if:

 $f : R \rightarrow R$ and $g : R \rightarrow R$ are given by $f(x) = \cos x$ and $g(x) = 3x^2$. Show that gof \neq fog. (N.

- C.E.R. T.) 6. If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$ find fof(x)
- 7. Let $A = N \times N$ be the set of all ordered pairs of natural numbers and R be the relation on the set A defined by (a, b) R (c, d) iff ad = bc. Show that R is an equivalence relation.
- 8. Let f: $R \rightarrow R$ be the Signum function defined as:

 $f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$

and g : R \rightarrow R be the Greatest Integer Function given by g (x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0,1]?

Long Questions:

- 1. Show that the relation R on R defined as $R = \{(a, b): a \le b\}$, is reflexive and transitive but not symmetric.
- 2. Prove that function f : N \rightarrow N, defined by f(x) = x² + x + 1 is one-one but not onto. Find inverse of $f : N \rightarrow S$, where S is range of f.

3. Let $A = (x \in Z : 0 \le x \le 12)$.

Show that $R = \{(a, b) : a, b \in A; |a - b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]. (C.B.S.E 2018)

4. Prove that the function f: $[0, \infty) \rightarrow R$ given by $f(x) = 9x^2 + 6x - 5$ is not invertible. Modify the co-domain of the function f to make it invertible, and hence find f-1. (C.B.S.E. Sample Paper 2018-19

Assertion and Reason Questions-

1. Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes(a), (b), (c) and (d) as given below.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false and R is also false.

Assertion(A): Let L be the set of all lines in a plane and R be the relation in L defined as R = {(L1, L2): L1 is perpendicular to L2}.R is not equivalence realtion.

Reason (R): R is symmetric but neither reflexive nor transitive

2. Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes(a), (b), (c) and (d) as given below.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false and R is also false.

Assertion (A): = {(T1, T2): T1 is congruent to T2}. Then R is an equivalence relation.

Reason(R): Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive.

Case Study Questions-

1. Consider the mapping f: A \rightarrow B is defined by f(x) = x - 1 such that f is a bijection.

Based on the above information, answer the following questions.

(i) Domain of f is:

- a) R {2} b) R c) R - {1, 2}
- d) R {0}

(ii) Range of f is:

- a) R
- b) R {2}
- c) R {0}
- d) R {1, 2}

(iii) If g: R - $\{2\} \rightarrow R$ - $\{1\}$ is defined by g(x) = 2f(x) - 1, then g(x) in terms of x is:

art

Mathema

- a. $\frac{x+2}{x}$ b. $\frac{x+1}{x-2}$ c. $\frac{x-2}{x}$ d. $\frac{x}{x-2}$
- (iv) The function g defined above, is:
 - a) One-one
 - b) Many-one
 - c) into
 - d) None of these
- (v) A function f(x) is said to be one-one if.
 - a. $f(x_1) = f(x_2) \Rightarrow -x_1 = x_2$
 - b. $f(-x_1) = f(-x_2) \Rightarrow -x_1 = x_2$
 - c. $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
 - d. None of these

2. A relation R on a set A is said to be an equivalence relation on A iff it is:

- I. Reflexive i.e., (a, a) $\in R \forall a \in A$.
- **II.** Symmetric i.e., $(a, b) \in R \Rightarrow (b, a) \in R \forall a, b \in A$.
- **III.** Transitive i.e., $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R \forall a, b, c \in A$.

Based on the above information, answer the following questions.

(i) If the relation R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} defined on the set $A = \{1, 2, 3\}$, then R is:

Smart

- a) Reflexive
- b) Symmetric
- c) Transitive
- d) Equivalence

(ii) If the relation $R = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$ defined on the set $A = \{1, 2, 3\}$, then R is:

- a) Reflexive
- b) Symmetric
- c) Transitive
- d) Equivalence
- (iii) If the relation R on the set N of all natural numbers defined as R = {(x, y): y = x + 5 and x < 4}, then R is:
 - a) Reflexive
 - b) Symmetric
 - c) Transitive
 - d) Equivalence

Smart

Mathema

- a) Reflexive
- b) Symmetric
- c) Transitive
- d) Equivalence
- (v) If the relation R on the set A = {I, 2, 3} defined as R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}, then R is:
 - a) Reflexive only
 - b) Symmetric only
 - c) Transitive only
 - d) Equivalence

Answer Key-

Multiple Choice questions-

(b) R is reflexive and transitive but not symmetric

(c) (6, 8) ∈ R

- (a) 1
- (b) 2

(d) f is neither one-one nor onto.

(a) f is one-one onto

(c) x

(b) $g(y) = \frac{4y}{4-3y}$

(b) Transitive and symmetric

(c) 24

Very Short Answer:

1. Solution: Range of R = {1, 2, 3}.

[: When x = 2, then y = 3, when x = 4, then y = 2, when x = 6, then y = 1]

2. Solution: Since 'f' is one-one,

 \therefore under 'f', all the three elements of {1, 2, 3} should correspond to three different elements of the co-domain {1, 2, 3}.

Hence, 'f' is onto.

3. Solution: When x > 1,

than $f(x) = \frac{x-1}{x-1} = 1$.

When x < 1,

than
$$f(x) = \frac{-(x-1)}{x-1} = -1$$

Hence, Rf = {-1, 1}.

4. Solution:

Let $x_1, x_2 \in N$.

Now, $f(x_1) = f(x_2)$

 $\Rightarrow 2x_1 = 2x_2$

$$\Rightarrow$$
 x₁ = x₂

- \Rightarrow f is one-one.
- Now, f is not onto.
- : For $1 \in N$, there does not exist any $x \in N$ such that f(x) = 2x = 1.

Hence, f is ono-one but not onto.

5. Solution:

f(f(x)) = 3 f(x) + 2

$$= 3(3x + 2) + 2 = 9x + 8.$$

6. Solution:

7. Solution:

$$f_{o}f(x) = f(f(x)) = (3-(f(x))^{3})^{1/3}$$
$$= (3 - ((3 - x^{3})^{1/3})^{3})^{1/3}$$
$$= (3 - (3 - x^{3}))^{1/3} = (x^{3})^{1/3} = x.$$

8. Solution:

Consider f: $\{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$

and g: $\{1, 2, 3, 4\} \rightarrow \{1, 2.3\}$ defined by:

$$f(1) = 1, f(2) = 2, f(3) = f(4) = 3$$

g(1) = 1, g(2) = 2, g(3) = g(4) = 3.

: $gof = g(f(x)) \{1, 2, 3\}$, which is onto

But f is not onto.

[:: 4 is not the image of any element]

Short Answer:

1. Solution:

(i) Here $R = \{(a, b): a \text{ is sister of } b\}$.

Since the school is a Boys' school,

 \therefore no student of the school can be the sister of any student of the school.

Thus $R = \Phi$ Hence, R is an empty relation.

(ii) Here R' = {(a,b): the difference between heights of a and b is less than 3 metres}.

Since the difference between heights of any two students of the school is to be less than 3 metres,

 \therefore R' = A x A. Hence, R' is a universal relation.

2. Solution:

For each $a \in X$, $(a, a) \in R$.

Thus R is reflexive. [:: f(a) = f(a)]

Now $(a, b) \in R$

 \Rightarrow f(a) = f(b)

 \Rightarrow f(b) = f (a)

 \Rightarrow (b, a) \in R.

Thus R is symmetric.

And $(a, b) \in R$

and $(b, c) \in R$

 \Rightarrow f(a) = f(b)

and f(b) = f(c)

 \Rightarrow f(a)= f(c)

 \Rightarrow (a, c) \in R.

Thus R is transitive.

Hence, R is an equivalence relation.

3. Solution:

Let 2 divide (a - b) and 2 divide (b - c), where $a, b, c \in Z$

 \Rightarrow 2 divides [(a - b) + (b - c)]

 \Rightarrow 2 divides (a – c).

Hence, R is transitive.

And $[0] = \{0, \pm 2, \pm 4, \pm 6, ...\}.$

- 4. Solution:
 - Since f(1) = f(2) = 1,
 - ∴ f(1) = f(2), where $1 \neq 2$.
 - \therefore 'f' is not one-one.

Let $y \in N$, $y \neq 1$,

we can choose x as y + 1 such that f(x) = x - 1

= y + 1 - 1 = y.

Also $1 \in N$, f(1) = 1.

Thus 'f' is onto.

Hence, 'f' is onto but not one-one.

5. Solution:

We have:

 $f(x) = \cos x$ and $g(x) = 3x^2$.

$$\therefore \text{ gof } (x) = g (f(x)) = g (\cos x)$$

 $= 3 (\cos x)^2 = 3 \cos^2 x$

and fog (x) = $f(g(x)) = f(3x^2) = \cos 3x^2$.

Hence, gof \neq fog.

6. Solution:

We have: $\frac{4x + 3}{6x - 4}$...(1) :: fof(x) - f (f (x))

$$=\frac{4f(x)+3}{6f(x)-4}$$

$$= \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} \quad [Using (1)]$$
$$= \frac{16x+12+18x-12}{24x+18-24x+16}$$
$$= \frac{34x}{34} = x.$$

7. Solution:

Given: (a, b) R (c, d) if and only if ad = bc.

- (I) (a, b) R (a, b) iff ab ba, which is true.
- $[\because \mathsf{ab} = \mathsf{ba} \forall \mathsf{a}, \mathsf{b} \in \mathsf{N}]$

Thus, R is reflexive.

- (II) (a, b) R (c,d) \Rightarrow ad = bc
- (c, d) R (a, b) \Rightarrow cb = da.
- But cb = be and da = ad in N.
- $\therefore (\mathsf{a},\,\mathsf{b}) \mathrel{\mathsf{R}} (\mathsf{c},\,\mathsf{d}) \Rightarrow (\mathsf{c},\,\mathsf{d}) \mathrel{\mathsf{R}} (\mathsf{a},\,\mathsf{b}).$

Thus, R is symmetric.

(III) (a,b) R (c, d)

 \Rightarrow ad = bc ...(1)

(c, d) R (e,f)

 \Rightarrow cf = de ... (2)

Multiplying (1) and (2), (ad). (cf) – (be), (de)

 \Rightarrow af = be

 \Rightarrow (a,b) = R(e,f).

Thus, R is transitive.

Thus, R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation.

8. Solution:

For $x \in (0,1]$. (fog)(x) = f(g(x)) = f([x]) $= \begin{cases} f(0); \text{ if } 0 < x < 1 \\ f(1); \text{ if } x = 1 \end{cases}$ $\Rightarrow f(g(x)) = \begin{cases} 0; \text{ if } 0 < x < 1 \\ 1; \text{ if } x = 1 \end{cases} \dots (1)$ And (gof) (x) = g(f(x)) = g(1) $[\because f(x) = 1 \forall x > 0]$ = [1] = 1

 $\Rightarrow (gof) (x) = 1 \forall x \in (0, 1] ...(2)$

From (1) and (2), (fog) and (gof) do not coincide in (0, 1].

Long Answer:

1. Solution:

We have: $R = \{(a, b)\} = a \le b\}$.

RELATIONS AND FUNCTIONS MATHEMATICS

Since, $a \le a \forall a \in R$,

 \therefore (a, a) \in R,

Thus, R reflexive.

Now, $(a, b) \in R$ and $(b, c) \in R$

 \Rightarrow a \leq b and b \leq c

 \Rightarrow a \leq c

 \Rightarrow (a, c) \in R.

Thus, R is transitive.

But R is not symmetric

[:: $(3, 5) \in R$ but $(5, 3) \notin R$ as 3 ≤ 5 but 5 > 3]

Solution:

Let $x_1, x_2 \in N$. Now, $f(x_1) = f(x_2)$ $\Rightarrow x_1^2 + x_1 + 1 = x_2^2 + x_2 + 1$ $\Rightarrow \quad x_1^2 + x_1 = x_2^2 + x_2$ $(x_1^2 - x_2^2) + (x_1 - x_2) = 0$ ⇒ $\Rightarrow (x_1 - x_2) + (x_1 + x_2 + 1) = 0$ $x_1 - x_2 = 0 \qquad [\because x_1 + x_2 + 1 \neq 0]$ \Rightarrow $x_1 = x_2$. \Rightarrow

Thus, f is one-one.

Let $y \in N$, then for any x,

f(x) = y if $y = x^2 + x + 1$

$$\Rightarrow \qquad y = \left(x^2 + x + \frac{1}{4}\right) + \frac{3}{4}$$

$$\Rightarrow \qquad y = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$

$$\Rightarrow \qquad x + \frac{1}{2} = \pm \sqrt{y - \frac{3}{4}}$$

$$\Rightarrow \qquad x = \pm \frac{\sqrt{4y - 3}}{2} - \frac{1}{2}$$

$$\Rightarrow \qquad x = \pm \frac{\sqrt{4y - 3} - 1}{2}$$

$$\Rightarrow \qquad x = \frac{\pm \sqrt{4y - 3} - 1}{2}$$

$$\begin{bmatrix} -\sqrt{4y - 3} - 1 \\ 2 \end{bmatrix}$$
Now, for $y = \frac{3}{4}, x = -\frac{1}{2} \in \mathbb{N}$.
Thus, f is not onto.

$$\Rightarrow f(x) \text{ is not invertible.}$$
Since, $x > 0$, therefore, $\sqrt{\frac{4y - 3}{2} - 1} > 0$

$$\Rightarrow \sqrt{4y - 3} > 1$$

$$\Rightarrow 4y - 3 > 1$$

$$\Rightarrow 4y > 4$$

$$\Rightarrow y > 1$$
.
Redefining, f: $(0, \infty) \rightarrow (1, \infty)$ makes
$$f(x) = x^2 + x + 1 \text{ on onto function.}$$
Thus, f(x) is bijection, hence f is invertible and f¹: $(1, \infty) \rightarrow (1, 0)$

$$f^{-1}(y) = \frac{\sqrt{4y - 3} - 1}{2}$$

Smart Mathematics

2. Solution:

We have:

 $R = \{(a, b): a, b \in A; |a - b| \text{ is divisible by 4}\}.$

(1) Reflexive: For any $a \in A$,

 \therefore (a, b) \in R.

|a - a| = 0, which is divisible by 4.

Thus, R is reflexive.

Symmetric:

Let $(a, b) \in R$

 \Rightarrow |a - b| is divisible by 4

 \Rightarrow |b – a| is divisible by 4

Thus, R is symmetric.

Transitive: Let $(a, b) \in R$ and $(b, c) \in R$

 \Rightarrow |a - b| is divisible by 4 and |b - c| is divisible by 4

 $\Rightarrow |a - b| = 4\lambda$

$$\Rightarrow a - b = \pm 4\lambda$$
(1)

and $|b - c| = 4\mu$

$$\Rightarrow$$
 b – c = ± 4 μ (2)

Adding (1) and (2),

 $(a-b) + (b-c) = \pm 4(\lambda + \mu)$

$$\Rightarrow$$
 a – c = ± 4 (λ + μ)

$$\Rightarrow$$
 (a, c) \in R.

Thus, R is transitive.

Now, R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation.

(ii) Let 'x' be an element of A such that $(x, 1) \in R$

 \Rightarrow |x - 1| is divisible by 4

25

lathema

$$\Rightarrow$$
 x - 1 = 0,4, 8, 12,...

 \Rightarrow x = 1, 5, 9, 13, ...

Hence, the set of all elements of A which are related to 1 is {1, 5, 9}.

(iii) Let $(x, 2) \in R$.

Thus |x-2| = 4k, where $k \le 3$.

Hence, equivalence class $[2] = \{2, 6, 10\}.$

3. Solution:

 \Rightarrow

Let $y \in R$.

For any x,
$$f(x) = y$$
 if $y = 9x^2 + 6x - 5$

$$\Rightarrow y = (9x^{2} + 6x + 1) - 6$$
$$= (3x + 1)^{2} - 6$$
$$\Rightarrow \qquad 3x + 1 = \pm \sqrt{y + 6}$$
$$\pm \sqrt{y + 6} - 1$$

3

 $\left[\because \frac{-\sqrt{y+6}-1}{3} \notin [0,\infty) \text{ for any value of } y \right]$

 $x = \frac{\sqrt{y+6}-1}{2}$

For
$$y = -6 \in \mathbb{R}$$
, $x = -\frac{1}{3} \notin [0, \infty)$.
Thus, $f(x)$ is not onto.
Hence, $f(x)$ is not invertible.

Since, $x \ge 0$,	$\therefore \frac{\sqrt{y+6}-1}{3} \ge 0$
⇒	$\sqrt{y+6}-1 \ge 0$
⇒	$\sqrt{y+6} \ge 1$
\Rightarrow	$y + 6 \ge 1$
⇒	$y \ge -5$.

We redefine,

f: $[0, \infty) \rightarrow [-5, \infty)$, which makes $f(x) = 9x^2 + 6x - 5$ an onto function. Now, $x_1, x_2 \in [0, \infty)$ such that $f(x_1) = f(x_2)$ $\Rightarrow (3x_1 + 1)^2 = (3x_2 + 1)^2$ $\Rightarrow [(3x_1 + 1)^+ (3x_2 + 1)][(3x_1 + 1)^- (3x_2 + 1)]$ $\Rightarrow [3(x_1 + x_2) + 2][3(x_1 - x_2)] = 0$ $\Rightarrow x_1 = x_2$ [$\because 3(x_1 + x_2) + 2 > 0$] Thus, f(x) is one-one. $\therefore f(x)$ is bijective, hence f is invertible and f^{-1} : $[-5, \infty) \rightarrow [0, \infty)$ $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$ Smart Mathematics

Assertion and Reason Answers-

- 1. (a) Both A and R are true and R is the correct explanation of A.
- 2. (a) Both A and R are true and R is the correct explanation of A.

Case Study Answers-

1. Answer :

(i) (a) R - {2}

Solution:

For f(x) to be defined x - 2; $\neq 0$ i.e., x; $\neq 2$.

 \therefore Domain of f = R - {2}

(ii) (b) R - {2}

Solution:

Let y = f(x), then $y = \frac{x-1}{x-2}$ $\Rightarrow xy - 2y = x - 1 \Rightarrow xy - x = 2y - 1$ $\Rightarrow x = \frac{2y-1}{y-1}$

Since, $x \in \in \mathbb{R} - \{2\}$, therefore $y \neq 1$

Hence, range of $f = R - \{1\}$

(iii) (d)
$$\frac{x}{x-2}$$

Solution:

We have,
$$g(x) = 2f(x) - 1$$

= $2\left(\frac{x-1}{x-2}\right) - 1 = \frac{2x-2-x+2}{x-2} = \frac{x}{x-2}$

(iv) (a) One-one

Solution:

We have,
$$g(x) = \frac{x}{x-2}$$

Let $g(x_1) = g(x_2) \Rightarrow \frac{x_1}{x_1-2} = \frac{x_2}{x_2-2}$
 $\Rightarrow x_1x_2 - 2x_1 = x_1x_2 - 2x_2 \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$

Thus, $g(x_1) = g(x_2) \Rightarrow x_1 = x_2$

Hence, g(x) is one-one.

(v) (c)
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

2. Answer :

(i) (a) Reflexive

Solution:

Clearly, (1, 1), (2, 2), (3, 3), $\in \mathbb{R}$. So, \mathbb{R} is reflexive on A.

Since, $(1, 2) \in \mathbb{R}$ but $(2, 1) \notin \mathbb{R}$. So, \mathbb{R} is not symmetric on \mathbb{A} .

Since, (2, 3), $\in \mathbb{R}$ and $(3, 1) \in \mathbb{R}$ but $(2, 1) \notin \mathbb{R}$. So, \mathbb{R} is not transitive on \mathbb{A} .

(ii) (b) Symmetric

Solution:

Since, (1, 1), (2, 2) and (3, 3) are not in R. So, R is not reflexive on A.

Now, $(1, 2) \in R \Rightarrow (2, 1) \in R$ and $(1, 3) \in R \Rightarrow (3, 1) \in R$. So, R is symmetric,

Clearly, $(1, 2) \in R$ and $(2, 1) \in R$ but $(1, 1) \notin R$. So, R is not transitive on A.

(iii) (c) Transitive

Solution:

We have, $R = \{(x, y): y = x + 5 and x < 4\}$, where x, $y \in N$.

 $\therefore R = \{(1, 6), (2, 7), (3, 8)\}$

Clearly, (1, 1), (2, 2) etc. are not in R. So, R is not reflexive.

Since, $(1, 6) \in R$ but $(6, 1) \notin R$. So, R is not symmetric.

Since, $(1, 6) \in \mathbb{R}$ and there is no order pair in \mathbb{R} which has 6 as the first element.

Same is the case for (2, 7) and (3, 8). So, R is transitive.

(iv) (d) Equivalence

Solution:

We have, $R = \{(x, y): 3x - y = 0\}$, where x, $y \in A = \{1, 2,, 14\}$.

 $\therefore R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

Clearly, $(1, 1) \notin R$. So, R is not reflexive on A.

Since, $(1, 3) \in R$ but $(3, 1) \notin R$. So, R is not symmetric on A.

Since, $(1, 3) \in \text{Rand} (3, 9) \in \text{R}$ but $(1, 9) \notin \text{R}$. So, R is not transitive on A.

(v) (d) Equi0076alence

Solution:

Clearly, (1, 1), (2, 2), $(3, 3) \in R$. So, R is reflexive on A.

We find that the ordered pairs obtained by interchanging the components of ordered pairs in R are also in R. So, R is symmetric on A. For 1, 2, $3 \in A$ such that (1, 2) and (2, 3) are in R implies that (1, 3) is also, in R. So, R is transitive on A. Thus, R is an equivalence relation.

