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Important Questions 
 

 

Multiple Choice questions- 

1. Distance between two planes: 

2x + 3y + 4z = 5 and 4x + 6y + 8z = 12 is 

(a) 2 units 

(b) 4 units 

(c) 8 units 

(d) ଵ

√ଶଽ
 units. 

2. The planes 2x – y + 4z = 3 and 5x – 2.5y +10 z = 6 are 

(a) perpendicular 

(b) parallel 

(c) intersect along y-axis 

(d) passes through ቀ0, 0,
ହ

ସ
ቁ 

3. The co-ordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis 
are given by: 

(a) (2, 0, 0) 

(b) (0, 5, 0) 

(c) (0, 0, 7) 

(d) (0, 5, 7). 

4. If α, ß, γ are the angles that a line makes with the positive direction of x, y, z axis, 
respectively, then the direction-cosines of the line are: 

(a) < sin α, sin ß, sin γ > 

(b) < cos α, cos ß, cos γ > 

(c) < tan α, tan ß, tan γ > 
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(d) < cos² α, cos² ß, cos² γ >. 

5. The distance of a point P (a, b, c) from x-axis is 

(a) √𝑎ଶ + 𝑐ଶ 

(b) √𝑎ଶ + 𝑏ଶ 

(c) √𝑏ଶ + 𝑐ଶ 

(d) b² + c². 

6. If the direction-cosines of a line are < k, k, k >, then 

(a) k > 0 

(b) 0 < k < 1 

(c) k = 1 

(d) k = ଵ

√ଷ
 or - ଵ

√ଷ
 

7. The reflection of the point (α, ß, γ) in the xy-plane is: 

(a) (α, ß, 0) 

(b) (0, 0, γ) 

(c) (-α, -ß, γ) 

(d) (α, ß, -γ). 

8. What is the distance (in units) between two planes: 

3x + 5y + 7z = 3 and 9x + 15y + 21z = 9? 

(a) 0 

(b) 3 

(c) 

√଼ଷ
 

(d) 6. 

9. The equation of the line in vector form passing through the point (-1, 3, 5) and parallel to line 
௫ିଷ

ଶ
 = ௬ିସ

ଷ
, z = 2 is 
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(a) 𝑟 = (-𝚤̂ + 3𝚥 ̂+ 5𝑘) + λ (2𝚤̂ +3𝚥 ̂+ 𝑘) 

(b) 𝑟 = (-𝚤̂ + 3𝚥 ̂+ 5𝑘) + λ (2𝚤̂ + 3𝚥)̂ 

(c) 𝑟 = (2𝚤̂ + 3𝚥 ̂– 2𝑘) + λ (-𝚤̂ + 3𝚥 ̂+ 5𝑘) 

(d) 𝑟 = (2𝚤̂ + 3𝚥)̂ + λ (-𝚤̂ + 3𝚥 ̂+ 5𝑘). 

10. Let the line ௫ିଶ

ଷ
 = ௬ିଵ

ିହ
 = ௭ିଶ

ଶ
 lie in the plane x + 3y – αz + ß = 0. Then (α, ß) equals: 

(a) (-6, -17) 

(b) (5, -15)ss 

(c) (-5, 5) 

(d) (6, -17). 

 Very Short Questions: 

1. Find the acute angle which the line with direction-cosines <  
ଵ

√ଷ
,

ଵ

√
, 𝑛 > makes with 

positive direction of z-axis. (C.B.S.E. Sample Paper 2018-19) 

2. Find the direction-cosines of the line. 

 

3. If α, β, γ are direction-angles of a line, prove that cos 2a + cos 2P + cos 2y +1 = 0. 
(N.C.E.R.T.) 

4. Find the length of the intercept, cut off by the plane 2x + y – z = 5 on the x-axis.   (C.B.S.E. 
Outside Delhi 2019) 

5. Find the length of the perpendicular drawn from the point P(3, -4,5) on the z-axis. 

6. Find the vector equation of a plane, which is at a distance of 5 units from the origin and 
whose normal vector is 2𝚤̂ − 𝚥 ̂+ 2𝑘  

7. If a line makes angles 90°, 135°, 45° with the x,y and z-axes respectively, find its direction 
cosines. 

8. Find the co-ordinates of the point where the line through the points A (3,4,1) and B (5,1, 6) 
crosses the xy-plane. 

9. find the vector equation of the line which passes through the point (3,4,5) and is parallel to 
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the vector 2𝚤̂ + 2𝚥 ̂- 3𝑘  

Short Questions: 

1. Find the acute angle between the lines whose direction-ratios are: 

< 1,1,2 > and <-3, -4,1 >. 

2. Find the angle between the following pair of lines: 

and 

 

and check whether the lines are parallel or perpendicular. (C.B.S.E. 2011) 

3. Find the vector equation of the line joining (1.2.3) and (-3,4,3) and show that it is 
perpendicular to the z-axis. (C.B.S.E. Sample Paper 2018-19) 

4. Find the vector equation of the plane, which is 

√ଶଽ
 at a distance of 

units from the origin and its normal vector from the origin is 2𝚤̂ −3𝚥 ̂ + 4𝑘 . Also, find its 
cartesian form. (N.C.E.R.T.) 

5. Find the direction-cosines of the unit vector perpendicular to the plane 𝑟 ⋅(6𝚤̂ − 3𝚥 ̂− 2𝑘) +1 
= 0 through the origin. (N.C.E.R.T.) 

6. Find the acute angle between the lines 

 

7. Find the angle between the line: 

𝑟 = (𝚤̂ − 𝚥 ̂+ 𝑘) + λ(2𝚤̂ − 𝚥 ̂+ 3𝑘) and the plane 𝑟 ⋅(2𝚤̂ + 𝚥 ̂− 𝑘) = 4 Also, find whether the line is 
parallel to the plane or not . 

8. Find the value of ‘λ’, so that the lines: 

ଵି௫

ଷ
 = ௬ିଵସ

ఒ
 = ௭ିଷ

ଶ
 and ି௫

ଷఒ
 = ௬ିହ

ଵ
 = ି௭

ହ
 are at right angles. Also, find whether the lines are 

intersecting or not 

Long Questions: 
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1. Find the shortest distance between the lines: 𝑟 = (4𝚤̂ − 𝚥)̂ + λ(𝚤̂ + 2𝚥 ̂− 3𝑘) and 𝑟 = (𝚤̂ − 𝚥 ̂+ 2𝑘) 
+ μ(2𝚤̂ + 4𝚥 ̂− 5𝑘) (C.B.S.E. 2018) 

2. A line makes angles α, β, γ, δ with the four diagonals of a cube, prove that: 

cos2 α + cos2 β + cos2 γ + cos2 δ= ସ
ଷ
. (N.C.E.R.T.) 

3. Find the equation of the plane through the line ௫ିଵ

ଷ
 = ௬ିସ

ଶ
 = ௭ିସ

ିଶ
 and parallel to the line: 

௫ାଵ

ଶ
 = ଵି௬

ସ
 = ௭ାଶ

ଵ
 

Hence, find the shortest distance between the lines. (C.B.S.E. Sample Paper 2018-19) 

4. Find the Vector and Cartesian equations of the plane passing through the points (2, 2, -1), 
(3,4,2) and (7,0,6). Also, find the vector equation of a plane passing through (4,3,1) and 
parallel to the plane obtained above. (C.B.S.E. 2019) 

Case Study Questions: 

1. Suppose the floor of a hotel is made up of mirror polished Kota stone. Also, there is a large 
crystal chandelier attached at the ceiling of the hotel. Consider the floor of the hotel as a plane 
having equation x - 2y + 2z = 3 and crystal chandelier at the point (3, -2, 1). 
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Based on the above information, answer the following questions. 

(i) The d.r'.s of the perpendicular from the point (3, -2, 1) to the plane x - 2y + 2z = 3, is: 

a. < 1, 2, 2 > 
b. < 1, -2, 2 > 
c. < 2, 1, 2 > 
d. < 2, -1, 2 > 

(ii) The length of the perpendicular from the point (3, -2, 1) to the plane x - 2y + 2z = 3, is: 

 

(iii) The equation of the perpendicular from the point (3, -2, 1) to the plane x - 2y + 2z = 3, is: 

 

(iv) The equation of plane parallel to the plane x - 2y + 2z = 3, which is at a unit distance 
from the point (3, -2, 1) is: 

a. x - 2y + 2z = 0 
b. x - 2y + 2z = 6 
c. x - 2y + 2z = 12 
d. Both (b) and (c) 

(v) The image of the point (3, -2, 1) in the given plane is: 
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2. Consider the following diagram, where the forces in the cable are given. 

 

Based on the above information, answer the following questions. 
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Answer Key- 
Multiple Choice questions- 

1. Answer: (d) ଵ

√ଶଽ
 units. 
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2. Answer: (b) parallel 

3. Answer: (a) (2, 0, 0) 

4. Answer: (b) < cos α, cos ß, cos γ > 

5. Answer: (c) √𝑏ଶ + 𝑐ଶ 

6. Answer: (c) k = 1 

7. Answer: (d) (α, ß, -γ). 

8. Answer: (a) 0 

9. Answer: (b) 𝑟 = (-𝚤̂ + 3𝚥 ̂+ 5𝑘) + λ (2𝚤̂ + 3𝚥)̂ 

10. Answer: (a) (-6, -17) 

Very Short Answer: 

1. Solution: 

l2 + m2 + n2 = 1 

 

 

n2 = 1 – ଵ
ଶ
 

n2 = ଵ
ଶ
 

n = ଵ

√ଶ
 

Thus, cos α = ଵ

√ଶ
 

Hence, α = 45° or గ
ସ

 

2. Solution: 

 

Its direction-ratios are <2, -1, 2>. 
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Hence, its direction- cosine are: 

 

3. Solution: 

Since α, β, γ are direction-angles of a line, 

∴ cos2 α + cos2 β + cos2γ = 1 

 

⇒ 1 + cos2α + 1 + cos2β + 1 + cos2γ = 2 

⇒ cos 2α + cos 2β + cos 2γ + 1 = 0, which is true. 

4. Solution: 

The given plane is2x + y – z = 5 

 

Its intercepts are ௫

ହ/ଶ
, 5 and -5. 

Hence, the length of the intercept on the x-axis is ௫

ହ/ଶ
 

Solution: 

Length of the perpendicular from P (3, -4,5) on the z-axis 

 

 

5. Solution: 
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6. Solution: 

Direction cosines of the line are: 

< cos 90°, cos 135°, cos 45° > 

 

7. Solution: 

The equations of the line through A (3,4,1) and B (5,1,6) are: 

 

Any point on (1) is (3 + 2k,4- 3k, 1 + 5k) …. (2) 

This lies on xy-plane (z = 0). 

∴ 1 + 5k = 0 ⇒ k = − ଵ
ହ
 

Putting in (2), [ 3 - ଶ
ହ
, 4 + ଷ

ହ
, 1-1) 

i.e. (ଵଷ

ହ
, ଶଷ

ହ
, 0) 

which are the reqd. co-ordinates of the point. 

8. Solution: 
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The vector equation of the line is 𝑟 = �⃗� + λ𝑚ሬሬ⃗  

i.e., 𝑟 = (3𝚤̂ + 4𝚥 ̂+ 5𝑘) + λ(2𝚤̂ + 2𝚥 ̂− 3𝑘) 

Short Answer: 

1. Solution: 

 

2. Solution: 

The given lines can be rewritten as: 

 

 

Here < 2,7, – 3 > and < -1,2,4 > are direction- ratios of lines (1) and (2) respectively. 

 

Hence, the given lines are perpendicular. 

3. Solution: 
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Vector equation of the line passing through 

 

∴ Line (1) is perpendicular to z-axis. 

4. Solution: 

 

5. Solution: 
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Dividing (1) by 7, 

 

6. Solution: 

Vector in the direction of first line 

 

Vector in the direction of second line 

 

∴ θ, the angle between two given lines is given by: 
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7. Solution: 

The given line is: 

 

 

 

If ‘θ’ is the angle between the line and the plane, 

 

Then 

 

Hence, the line is parallel to the plane. 

8. Solution: 
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(i) The given lines are 

 

These are perpendicular if: 

 

Hence λ = 1. 

(ii) The direction cosines of line (1) are <-3,1,2> 

The direction cosines of line (2) are < -3,1, -5 > 

Clearly, the lines are intersecting. 

Long Answer: 

1. Solution: 

Comparing given equations with: 
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2. Solution: 

Let O be the origin and OA, OB, OC (each = a) be the axes. 
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Thus the co-ordinates of the points are : 

O (0,0,0), A (a, 0,0), B (0, a, 0), C (0,0, a), 

P (a, a, a), L (0, a, a), M (a, 0, a), N (a, a, 0). 

Here OP, AL, BM and CN are four diagonals. 

Let < l, m, n > be the direction-cosines of the given line. 

Now direction-ratios of OP are: 

<a-0,a-0,a-0>i.e.<a,a,a> 

i.e. < 1,1,1 >, 

direction-ratios of AL are: 

<0-a, a-0, a-0> i.e. <-a,a,a> 

i.e. <-l, 1,1 >, 

direction-ratios of BM are: 

<a-0,0-a, a-0> 

i.e. <a,-a,a> i.e. < 1,-1, 1 > 

and direction-ratios of CN are: 

<a-0,a-0,0-a> i.e. <a,a,-a> 

i.e. < 1,1,-1 >. 
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Thus the direction-cosines of OP are: 

 

the direction-cosines of AL are: 

 

the direction-cosines of BM are: 

 

and the direction-cosines of CN are: 

 

If the given line makes an angle ‘a’ with OP, then: 

 

 

Squaring and adding (1), (2), (3) and (4), we get: 

cos2 α + cos2 β + cos2 γ + cos2δ 
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+ (l-m + n)2 + (l + m — n)2] 

 

 

3. Solution: 

The two given lines are: 

 

Let <a, b, c> be the direction-ratios of the normal to the plane containing line (1). 

∴ Equation of the plane is: 

a(x- l) + b(y-4) + c(z-4) …(3), 

where 3a + 2b – 2c = 0 …(4) 

[∵ Reqd. plane contains line (1)] and 2a – 4b + 1.c = 0 

[∵ line (1) a parallel to the reqd. plane] Solving (4) and (5), 

 

Putting in (3), 

6k(x- 1) + 7k(y – 4) + 16k(z – 4) = 0 

= 6(x – 1) + 7(y – 4) + 16(z – 4) =0 

[∵k ≠ 0] 

⇒ 6x + 7y+ 16z-98 = 0, 

which is the required equation of the plane. 

Now, S.D. between two lines = perpendicular distance of (-1,1, – 2) from the plane 
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6(-1) + 7(1) +16(-2) – 98 

V(6)2 + (7)2 + (16)2 

-6 + 7-32-98 V36 + 49 + 256 

4. Solution: 

(i) Cartesian equations 

Any plane through (2,2, -1) is: 

a(x – 2) + b(y- 2) + c(z + 1) = 0 … (1) 

Since the plane passes through the points (3,4,2) and (7,0,6), 

∴ a(3 – 2) + b(4 – 2) + c(2 +1) = 0 

and a(7 – 2) + b(0 – 2) + c(6 + 1) = 0 

⇒ a + 2b + 3c = 0 …(2) 

and 5a – 2b + 7c = 0 …(3) 

 

∴ a = 5k,b = 2k and c = -3k, 

Putting the values of a, b, c in (1), we get: 

5k(x – 2) + 2k(y – 2) – 3k(z + 1) = 0 

⇒ 5(x-2) + 2(y-2)-3(z+ 1) =0[∵ k ≠ 0] 

=» 5x- 10 + 2y-4-3z-3 = 0 

=» 5x + 2y-3z-17 = 0, …(4) 
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which is the reqd. Cartesian equation. 

 

(ii) Any plane parallel to (4) is 

5x + 2y – 3z + λ – 0 … (5) 

Since it passes through (4, 3,1), 

5(4) + 2(3) – 3(1) + λ = 0 

⇒ 20 + 6 — 3 + λ = 0 

⇒ λ = -23. 

Putting in (5), 5x + 2y – 3z – 23 = 0, which is the reqd. equation. 

 

Case Study Answers: 

1. Answer : 
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2. Answer : 
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